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Abstract Here an attempt has been made to study the MHD flow of a dusty, electrically
conducting, visco-elastic Rwlin-Ericksen fluid starting from the rest with time-dependent types
applied at the free surface. The analytical expression for velocity profiles of the fluid and dust
particles have been found by using the Laplace transform techmique. Finally the effects of
magnetic field time, elastic parameter and mass concentration of dust particles are discussed with
the help of graphs and tables.

Introduction

The study of motions of fluids is one of the most successful and useful
applications of mathematics. In classical viscous fluid we know that the fluid
exerts a viscosity effect when there is a tendency for shear flow or tangential
flow of the fluid. The model of such fluid has been considered to a wider extent.
Various types of basic problems of a diversified nature have been solved in this
branch. There are other types of fluids called visco-elastic fluids, which possess
a certain degree of elasticity in addition to their viscosity. These visco-elastic
fluids in the course of their motion store up energy in the material as strain
energy. The remaining energy is lost due to viscous dissipation. Clearly, for
this class of fluids one cannot neglect the strain, however small it may be. It is
responsible for recovery to the original state and thereby reverse flow may
occur for removal of the stress. In the process of flow of the fluid the natural
state of the fluid changes constantly and tries to attain an instantaneous
deformed state. In fact it is never attained completely. The measure of elasticity
is, in fact, the lag of the fluid. It is sometimes termed the “memory” of the fluid.
A good number of constitutive equations have been proposed at different times
for different types of visco-elastic fluids. This has been exhibited in the work of
Kapur et al. (1982) as well as Bhatnagar (1967).

In recent years, interest in the problem of the flow of dusty visco-elastic
fluids has increased enormously through its great importance in the
technological field such as the petroleum industry, environmental pollution,
purification of crude oils, fluidization, soil dispension by natural wind, and so
on. Naturally studies of phase systems are mathematically interesting and
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physically useful for various good reasons. A good number of research workers
are engaged in this field of studies including Saffman (1962). Ghosh and
Debnath (1986) have investigated hydromagnetic Stokes flow in rotating fluid
with suspended small particles. The problem of MHD flow of a dusty visco-
elastic conducting fluid through a porous medium between two oscillating
plates has been dealt with by Ghosh and Samad (1999) Ghosh et al. (2000)
studied the hydromagnetic flow of a dusty visco-elastic fluid between two
infinite parallel plates.

The main object of this paper is to conduct an investigation of the motion of
a hydromagnetic flow of a dusty visco-elastic (Rivlin-Ericksen) fluid starting
from rest with time-dependent tangential stress of different types applied at the
free surface. The analytical expression for velocity profiles of the fluid and dust
particles has been found by using the Laplace transform technique.

Finally, the effects of magnetic field, time, elastic parameter and mass
concentration of dust particles are discussed with the help of graphs and tables.

In investigation of the titled problem some related papers (Rivlin and
Ericksen, 955; Das, 1988; Debnath and Ghosh, 1988) and books (Batchelor,
1967; Carslaw and Jaeger, 1988; Debnath, 1995) have been consulted.

Basic equation and formulation of the problem
The constitutive equation of Rivlin-Ericksen fluid is given by

/
Tij = P& + 7

7= oA + 9AY + gAY AL

y
where

Ai(jl) = (uij + uj;) is the deformation rate tensor,

Ai(jz) = (ajj + aj; + 2ujmUp ) is the visco-elastic tensor,

oy; . .
a; = —— + uju; is the acceleration vector,

ot

7 is the stress vector, 7, is the deviatoric stress tensor which depends on the
gradient velocity, acceleration and higher time derivation of velocity, ¢1, @2, ¢3
are the co-efficient of viscosity, visco-elasticity and cross-viscosity respectively
and are in general functions of temperature and material properties, #; velocity
components.

We now consider the flow of a dusty hydromagnetic visco-elastic Rivlin-
Ericksen fluid having a finite thickness h over a plate with time dependent
tangential surface, traction which is applied at the upper surface. We take the y-
axis along the plate in the direction of the flow and x-axis being perpendicular
to the plate. A uniform magnetic field is applied perpendicular to the plate (see
Figure 1).
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Figure 1.
Flow configuration

Using the above condition and results, the governing equation of the
problem is governed by the following two equations (Saffman, 1962).

ou 0 82u KoNO « aBgu
i et B _q) = &g = 2207 1
at <a+ﬂ t) e, VTWogYT—, 1)
and
ov
mE:KO(u—V) (2)

where u is the fluid velocity, v is the velocity of the dust particles. Ny the,
number of density of the particles, K the Stokes resistance coefficient (= 67ur
for spherical particles of radius r), o the kinematic co-efficient of viscosity, 3
the kinematic co-efficient of visco-elasticity, By the intensity of the imposed
magnetic field, m the mass per unit volume of the dust particles, o the electrical
conductivity of the fluid K and the permeability of the porous medium.

The initial condition is u = v = 0 for t < 0 and V x and the boundary
conditions areu=v =0whenx =0,t > 0and (o + 32) % = {(t), whenx = h,
t > 0, where 1(t) is the applied surface traction at the upper surface. Introducing
the non-dimensional quantities:

X,_Xt,_atu, uh , vh k
~h’ R o« a h?

and, omitting dashes over the primed quantities, we get from equations (1) and
(2) respectively

ou 9\ 2u
8‘[_<1+E8‘[>5X2+)\(V_u)_(}u (3)
and
ov
i Lu-v) 4)
where

Surface traction f(t)

x=0""



:h_z f_IIIN()

L ,f = —— (mass concentration of the dust particles),
P

Tad

m . . .
7 = — (time relaxation of the dust particles),

ko

E= % (elastic parameter),

h
M = Bjh 7 (Hartmann number),
\/ pa
G=M &
N K
and A = fL

The non-dimensional initial condition is

u=v=0whent < 0 for all xin [0,1]

and the boundary conditions are
u=v=0when x =0 for all t

and

0 du

B/ h
f(t) = anf(t E)

Solution of the problem
To solve equations (3) and (4) we use Laplace transform

where

u(x,s) :/ u(x,s)e dt, Re(s) >0
0

With the help of initial condition and Laplace transform we get from equations

(3) and (4):
d%u

w2 Q(s)u=0

and
Lu
L+s

<
I

(7)
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where
s +s(L+A+G)+GL

2 _
VO =T 9075
After using the Laplace transform the boundary conditions become
i=v=0atx=0 9)
and
(1+Es) du_ fs) atx=1 (10)
dx N
where

f(s) = /O h f(t)e Sdt

The solution of equation (7) with the boundary conditions (9) and (10) is given
by

ﬁ:

)f( s)sinh Qx (1)

Q(s)(1 +sE) coshQ
Lf(s) sinh Qx

V= Q)+ L)1+ sE)cosh Q (12)

Case I: Flow due to periodic surface traction
For periodic surface traction, we take f(t) = a coswt; a and w are constant and as
such

as
f(s) = .
(s) s + w?

Putting the value of f(s) in equations (11) and (12) and then inverting the
transform by the method of calculus of residues, we get the velocity
components of the fluid and dust particles, which are respectively given by

o= Au(y) coswt + By(y smwt—l—ZZ " sin 2n+1)7><

AI(})Sgl)eSI(*l)t Ar(lz)sgz)esgzn

2 + 2
<s§11) +w2> (SI(]Z) +w2)




and

v Ai(y)(L? — Lw)coswt  Bi(y)(L? + Lw) sin wt

o Z1e?) T [+
S n . Ty
+2LHZ:O( 1)"sin(2n +1) 5~

ADGD st ADD) st

(s +u2) (st + 1) ’ (s +2) (s +1)

where

(GL — ?)(L — Eu?) + (A + G+ L)(1 + LE)
(L — Ew?)® + (1 4+ LE)*w?

A:

)

w[(A+G+L)(L - Ew?) + (GL — w?)(1 +LE)]

B= 2 2
(L —Ew?)” + (1 4+ LE)"w?

9

1
VAZ B2+ A\’ .
(pa, p2) = (%) ,sr(ll) and sr(l?‘) are the roots of the equation

(1+Ep})s’ + [A+G + L+ (1+ LE)pyJs + L(G + pg) =0,

pn—(2n+1) n=20,1,2,...

l\D|>l

. ) ()
AU — (1+s2E)(sn’ +L)° P10

1-En+G)sY —2LGE - 1)s¥ + L(A + L — GLE)

K; = coshpycos g, Ko =sinhpgsinpe, Ks= K% + K%
&(y) +Kisinh gy cos poy 4+ Ko coshpy sin pigy

n(y) = Ki cosh pyy sin poy — Ko sinh g1y cos pay
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Ay (y) = = Beon)&y) + B + z)n(y)
Ks[(u1 — Ewpa)” + (Bwp + piz)?]

(Ewpn 4+ p2)€(y) — (11 — Ewpg)n(y)
Ks[(m1 — Ewpa)® + (Bwp + pa)’]

Bi(y) =

If we take t —oc,w — 0 In equations (12) and (13), we get the velocity
distributions for constant shearing stress in steady state. In this case, it is very
interesting to note that the fluid and dust particles move with the same velocity
of magnitude

B sinh v/Gx
B VG cosh VG

which is independent of elastic parameter (E) but depends on Hartmann
number. Further to this, if we take L— o< in equation (14), we get the velocity of
clean fluid, which is same as equation (12).

Shear stress at the base

The shear stress at the lower plate is given by
L

Introducing non-dimensional quantities:

2
, X , uh , at , mnh
X = — u = —, t _ — 7'1 g

h’ a h2’ pa

and, omitting dashes over the primed quantities, we have from equation (15)

[(1 +E ;) gu] (16)

where

E = % is the elastic parameter



From equations (12) and (16) we have

2n+1

a_ K3

n _ (Kicoswt + Kj sin wt) Z
1n=0

APV (1 +EsPyest  APsP (1 4 EsPest’

(sr(}) + w2> (sﬁf) + w2>

which gives the shear stress at the plate.

Case II: Flow due to impulsive shearing stress
In the present circumstances, we take f(t) = Sé(t), where S is a constraint and
6(t) 1s Dirac delta function.

From equations (11) and (8), we get

Ssinh Ssinh
oo sinh py and ¥ — sinh py

p(1+sE) coshp p(1 +sE)(s+ 1) coshp

By inverse Laplace transform, we obtain from U and ¥ the expression for u and
v as

LIPS P (1)gsit (2) st

S—ZHEZO( 1)" sm(Zn—l—l) 5 [A + A€ } (17)
and

Vo o\~ e (2) s

S_2§ (-n" sm(2n+1) 5 [A +A } (18)

i
o

The shear stress at the fixed base (as in the previous case) is

LR Z "(2n -+ 1) [AD 1+ Bs)er' + AR(1 + Bs)e™ ] (19)

Case III: Flow due to constant shearing stress acting for a finite
time T
In this case, let us take

f(t) = S[H(t) — H(t — T)],

where S is a constant and H(t) is the Heaviside unit function defined by
H(t) =0 fort<0
=1 fort>0
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Then from equations (8) and (11)

S(1 — e~*T) sinh px

v s(1 4 sE)pcoshp

(20)

and

S(1 — e~*T) sinh px

VT S+ sE)(I + 7s)pcoshp

(21)

By inverse Laplace transform, we have

u sinh vGy 22

S "sin(2n + 1 At 1 A@ st
S~ VGeosh VG )2 [ n N

" e

when 0 <t <T

-9 2 1 A(l) (1_ 75;1)’1‘) Sfll)t
nz:; "sin(2n + )2 [ 5 e e

+AP (1 - efsf{”T) eSf?)t] (23)
n
whent > T
and
s sinh vGy X A<1> t Af)esf)t
— + 2L sm (2n+1 +
S \/(_}cosh\/_ Z ) 2 (1 +L Sr(12)+L

when 0 < t<T

(24)
— LY (-1 =
HZ;( 1)"sin(2n + 1) 5
AE}) (1 . e—qul)T> eSﬁl)t Ag) (1 _ e—S,(f)T) eSf)t (25)
_l’_
) S

whent > T

Discontinuity in the velocity
We observe that, when the shear stress is withdrawn, there is a jump
discontinuity of amount



o sinh vGx 49 Z

"sin(2n +1) - (A 4 A®) 26
: \/(_}cosh\/_ ) 2 ( g > (26)

sinh vGx X ASID Aﬁf)
Jr= + 2L "sin(2n + 1 + 27
" VGeosh VG Z e\t

in the velocity of the fluid and the dust particles respectively.

Shear stress at the fixed base
The shear stress at the fixed base (as in Case I) is

§—sech\/_+ﬂz )'(2n +1)
[Ag (1+EsV)est + AP (1 + Es@)es t}

when 0 <t < T

=1 i(—l)“@n +1) [A@ (1 n Esgn) (1 _ efsg%) st

n=0
+ AP (1+Es?) (1- es£2>T>es<f>t] (29)
when t > T (time)

Discontinuity in the shear stress
When the surface traction is withdrawn, at time t = T there is a jump
discontinuity of amount

Jr. = sechVG + I "(2n+1)
§ e 30)

[A D(1+EsMs®) + A@(1 + Eg@s@)}
which is independent of time t.

Numerical discussion

In the graphs and tables the displacement profiles u/a and v/a for Case I have
been exhibited against the space co-ordinates x with the assumed values of E,
the elastic parameter, the values of M, the Hartmann number, the values of f,
the mass concentration of the dust particles as well as time parameter t. In the
same fashion the profiles of the skin-friction 7; have been exhibited against the

MHD flow of a
visco-elastic
fluid

691




HFF
11,7

692

Figure 2.
Velocity profiles for
different values of E

time t, assuming various values of the elastic parameter E, the values of G and
the values of f.

Moreover, in the graphs and tables of the velocity distribution and the skin-
friction the relevant quantities necessary for exhibition of the variations have
been prepared for ready observation and necessary action.

Finally, the observation of the graphs and the corresponding analysis of the
variations, the characteristics features and truth emerging have been presented
in the discussion in the last article.

Discussion and conclusion

It is very clear from the numerical computation of the velocity profile of the
fluid, as exhibited in Figure 3, that the velocity of the fluid is diminished due to
the presence of the transverse magnetic field. Whenever the elastic parameter
(E) increases, the velocity of the fluid diminishes, as in Figure 2. Clearly from
Figure 4, as t increases, the value of the velocity component of the fluid
gradually increases.

From Tables I, II and III the same phenomenon is found in the case of the
velocity of dust particles. Further to this, it is also obvious from Tables IV and
V that the velocity components of the fluid element and dust particles increases
with the increase of mass concentration of the dust particles (f). Also from
Figures 5 and 6 we see that the shear stress at the fixed base is periodic with
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0.300 0.001710 0.001699 0.001688
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0.850 0.008786 0.008756 0.008727 when w = 0.20,
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respect to time. So we conclude that (i) for fixed K, the amplitude of the shear
stress decreases with the increase of Hartmann number (M) and (i) for fixed M
the amplitude of the shear stress decreases with the decrease of the porosity of
the medium (K). Figure 6 reveals that the amplitude of the shear stress
increases with the increase of the elastic parameter (E) and slightly decreases
with the increase of f, the mass concentration of the dust particles.

From the above discussion, we immediately come to the conclusion that the
velocity fields of the fluid and dust particles decrease with the increase of the
Hartmann number (M), that is, the magnetic field decelerates the flow. Thus the
magnetic number characterising the intensity of the magnetic field always
arrests the velocity of dusty fluid. Similarly, if the elastic parameter of the fluid
increases, the velocity of the fluid element diminishes.

Both these phenomena are in conformity with the concept that the magnetic
lines of force always drag the fluid perpendicular to them. Magnetic lines of
force are as if frozen in the fluid.

References
Batchelor, GK. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge.

Bhatnagar, P.L. (1967), A Lecturer Course on Non-Newtonian Fluids (Constitutive Equations),
Indian Institute of Science, Bangalore.

MHD flow of a
visco-elastic
fluid

697

Figure 6.

Shear stress profiles for
different values of E and
fwhenM =1 K =01,
L=667,w=06




HFF
11,7

698

Carslaw and Jaeger (1988), Operational Method in Applied Mathematics, Dover Publications,
New York, NY.

Das, K K. (1988), Proceedings of Benares Hindu University (BHU) Mathematical Society, India.
Debnath, L. (1995), Integral Transforms and Their Applications, CRC Press, Boca Raton, FL.

Debnath, L. and Ghosh, A K. (1988), “On unsteady hydromagnetic flows of a dusty viscous fluid
between two oscillating plates”, Appl. Sci., Res., Vol. 45, p. 353.

Ghosh, AK. and Debnath, L. (1986), “Hydromagnetic Stokes flow in a rotations fluid with
suspended small particles”, Appl Sci. Res., Vol. 43, p. 165.

Ghosh, N.C., Ghosh, B.C. and Debnath, L. (2000), “The hydromagnetic flow of a dusty visco-
elastic fluid between two infinite parallel plates, Computers and Mathematics with
Applications, Vol. 39 No. 103, Pergamon, New York, NY.

Ghosh, SK. and Samad, A. (1999), “MHD flow of a dusty visco-elastic conducting fluid through
porous medium between two oscillating plates”, Indian Journ. of Theoretical Physics,
Vol. 47 No. 2.

Kapur, J.N., Bhatt, B.S. and Sacheti, N.C. (1982) Non Newtonian Fluid Flows, Pragati Prakashan,
India.

Rivlin, R.S. and Ericksen, J.L. (1955), J. Rat. Mech. Anal., Vol. 4, p. 329.
Saffman, P.G. (1962), “On the stability laminar flow of a dusty gas”, J. Fluid Mech., Vol. 13, p. 120.



